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Abstract

In the framework of statistical classification the design of multilayer neural net-
works can be posed as a problem of approximating class conditional distributions
by finite mixtures. The approach is based on the fact that at each layer the mix-
ture components corresponding to units (neurons) define information preserving
transform between consecutive layers. In this way the classification problem is
transformed without information loss and the class-conditional distributions can
be estimated at each layer again. In the present paper we prove that a logarithmic
version of the transform is fault tolerant in the sense that a bounded inaccuracy of
the estimated components may cause only a bounded information loss. Using this
result we define discrete transforms with bounded information loss with the aim to
reduce the complexity of estimating of the involved multidimensional probability
density functions.

1 Introduction

The design of artificial neural networks is usually based on the concept of a formal
neuron which is defined most frequently by means of a response function (unit step
function or sigmoidal function) depending on a weighted sum of input variables. The
properties of artificial neural networks can be optimized for some purpose in terms of
the involved parameters.

0Early version of the paper: Grim J., ”Discretization of probabilistic neural networks with bounded
information loss.” In: Computer-Intensive Methods in Control and Data Processing, pp. 205–210,
(Preprints of the 3rd European IEEE Workshop CMP’98, Prague, September 7 – 9, 1998), J. Rojicek
et al., eds., UTIA AV CR: Prague (1998)
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In the framework of statistical classification there is an alternative probabilistic
approach to optimization of neural networks. We approximate the unknown class-
conditional probability density functions by finite mixtures and identify the component
densities of mixtures with neurons. In this way we obtain the optimal parameters of
neurons by maximum-likelihood (m.-l.) estimation of mixtures based on EM algorithm
(cf. [3], [4]).

The possibility of a general design of layered neural networks by means of m.-l.
estimation of distribution mixtures has been studied by many authors (cf. e.g. [5],
[9], [15], [19], [20]). A recent reference to probabilistic neural networks is the paper of
Streit and Luginbuhl [16] who proposed m.-l. training of a feed-forward layered neu-
ral network to recognize samples from different classes. They assume approximation of
class-conditional distributions by mixtures of normal components - for each class sepa-
rately. In this sense the class-conditional mixtures include different sets of components.
Unfortunately, this approach would mean that, at higher levels of neural network, there
are different (disjunct) sets of neurons for each class. In biological terms, this approach
would correspond to non-overlapping receptive fields of output neurons.

To obtain a more realistic model of biological neural systems we suggested the con-
cept of shared components with the corresponding modification of EM algorithm (cf.
[6]). In this way the component distributions may be shared by all class-conditional
mixtures and the corresponding connections to output units are not restricted.

The statistical classification based on class-conditional mixtures with shared compo-
nents introduces naturally an additional decision problem which could be called descrip-
tive. Each of the shared component distributions can be assumed to define an individual
elementary class corresponding e.g. to some elementary situation on input. The sec-
ondary “descriptive” classes can be identified in usual way by a posteriori probabilities
which are simply related to the primary classification problem.

In connection with optimization of multilayer neural networks there is a long history
of information-theoretic approaches (cf. [9], [12]). In the context of probabilistic neural
networks it has been shown (cf. [6], [18]) that the Shannon information contained in
the descriptive decision problem can be automatically preserved by a special class of
transforms based on mixtures. Roughly speaking, the information preserving transform
defined by a vector of coordinate functions “unifies” the points of the input space having
identical a posteriori probability distributions. Simultaneously, the transform minimizes
the entropy of the transformed space.

It will be shown in the present paper that by choosing logarithmic coordinate func-
tions, we obtain a transform which is fault tolerant in the sense that a bounded inac-
curacy of the estimated component distributions may cause only bounded information
loss. Using this result we show that the coordinate functions may be discretized while
keeping the resulting information loss under an arbitrarily chosen positive bound.

We summarize first the basic properties of probabilistic neural networks (cf. Sec. 2-
4). Then we prove the fault-tolerant property of information preserving transforms and
define the discrete transform as a direct consequence. Loosely speaking, the information
loss caused by discretization can be done arbitrarily small by increasing the number of
discrete values.
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2 Statistical classification based on finite mixtures

Assume that there is a finite set of K classes with a priori probabilities q(ω), ω ∈ Ω
characterized by a corresponding finite set of conditional probability density functions
{p(.|ω), ω ∈ Ω} on Ndimensional real space X = RN . We denote

{X , p(·|ω)q(ω), ω ∈ Ω}, Ω = {ω1, . . . , ωK} (1)

the related statistical classification problem on X . In other words, any given point
x = (x1, . . . , xN) ∈ X is to be classified with respect to the classes Ω.

Denoting p(x) the unconditional probability density function

p(x) =
∑

ω∈Ω

p(x|ω)q(ω), x = (x1, . . . , xN) ∈ X , (2)

xn ∈ X n = R, X = X 1 ×X 2 × . . .XN

we can write the formula for a posteriori probabilities

q(ω|x) =
p(x|ω)q(ω)

p(x)
, ω ∈ Ω. (3)

They contain all statistical information about Ω given an input vector x ∈ X and can
be used to define a unique decision, if desirable.

In the framework of probabilistic neural networks (cf. [6], [7]) we assume that each
conditional distribution p(x|ω) can be approximated by a finite mixture with compo-
nents from a common finite set of M probability density functions

F = {f(.|m),m ∈M}, M = {1, 2, . . . , M}. (4)

where M denotes the index set. In particular we assume

p(x|ω) =
∑

m∈M
f(x|m)w(m|ω), (5)

x ∈ X , ω ∈ Ω, f(.|m) ∈ F
where w(m|ω) are some conditional weights:

w(m|ω) ≥ 0,
∑

m∈M
w(m|ω) = 1,

w(m) =
∑

ω∈Ω

w(m|ω)q(ω). (6)

In this way the component densities f(x|m) may be “shared” by all class-conditional
probability densities p(x|ω).

The concept of shared components naturally corresponds with the structural prop-
erties of biological neural pathways since there is a rich branching of axons into multiple
endings and, on the other hand, a large number of different axons converging at a single
neuron. In view of these well known properties of biological neural networks any struc-
tural limitations implied by separate estimation of class conditional densities would be
unrealistic.
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By substituting (5), Eq. (2) can be rewritten in the form

p(x) =
∑

ω∈Ω

q(ω)

[ ∑

m∈M
f(x|m)w(m|ω)

]
= (7)

=
∑

m∈M
f(x|m)w(m), x ∈ X

where w(m) is defined in (6). Let us note that the set F of component densities intro-
duces an additional secondary “descriptive” decision problem with a priori probabilities
w(m). In this sense each component f(x|m) of the mixture (7) may correspond to an
elementary situation on input. Given a vector x ∈ X , the presence or relevance of
elementary input situations can be characterized by the posterior distribution on M:

w(m|x) =
f(x|m)w(m)

p(x)
, m ∈M, x ∈ X . (8)

It is easy to see that there is a simple relationship between the a posteriori probabilities
obtained for the primary and descriptive decision problem:

q(ω|x) =
p(x|ω)q(ω)

p(x)
=

∑

m∈M
q(ω|m)w(m|x), (9)

q(ω|m) =
w(m|ω)q(ω)

w(m)
.

In view of the Bayes formula (9) the solution of practical decision problems can be
confined to estimating the unknown component densities f(x|m) and the conditional
weights w(m|ω). The procedure starting with estimation of a new distribution mixture
on the transformed space can be repeated several times to optimize multilayer networks.
The final decision-making based on identification of elementary input situations can be
performed by linear combinations of a posteriori probabilities at the highest level.

Let us remark that, by introducing the concept of shared components in Eq. (5), we
make an implicit assumption

f(·|m,ω) = f(·|m), ω ∈ Ω, m ∈M. (10)

Considering this identity we can easily verify (cf. [7]) that the Shannon information
I(X ,M) about the set M contained in the space X is the same as the information
about the direct product Ω×M:

I(X ,M× Ω) = H(X )−H(X|M× Ω) (11)

= H(X )−H(X|M) = I(X ,M).

Here H(X ) and H(X|M) denote the related Shannon entropies. In other words the
information I(X ,M) cannot be increased by the conditional weighting of components
(5). Also from Eq. (5) it follows (cf. [6]) that the decision information I(X , Ω) is
bounded by the “descriptive” information I(X ,M):

I(X , Ω) ≤ I(X ,M). (12)
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3 Hybrid estimation scheme

Numerically the finite mixture model of Sec. 2 can be optimized by means of EM
algorithm (cf. [3], [4], [6]). Suppose now that for each ω ∈ Ω there is a nonempty
set Sω of independent observations identically distributed according to some unknown
probability density p(x|ω):

Sω = {x(ω)
1 , . . . , x

(ω)
Kω
}, x

(ω)
k ∈ X , S =

⋃

ω∈Ω

Sω.

Let us note first that we can estimate the component densities f(x|m) in unsupervised
way, irrespectively of the classes ω ∈ Ω, by maximizing the log-likelihood function

L =
1

|S|
∑

x∈S
log

[ ∑

m∈M
f(x|m)w(m)

]
, (13)

where |S| denotes the number of elements in the set S. The m.- l. estimates of param-
eters can be computed by the iterative equations of EM algorithm:

E-step: (m ∈M, x ∈ S)

w(m|x) =
f(x|m)w(m)∑
j∈M f(x|j)w(j)

, (14)

M-step: (m ∈M)

w
′
(m) =

1

|S|
∑

x∈S
w(m|x), (15)

f
′
(·|m) =

= arg max
f(·|m)

{ 1

|S|
∑

x∈S
w(m|x) log f(x|m)}. (16)

(Here apostrophe denotes the new values.)
The last implicit equation can be solved in a closed form in many cases of practical

importance (cf. e.g. [4], [6]).
Having obtained the unsupervised estimates of the components f(x|m) we may

confine the supervised estimation to the conditional weights w(m|ω) (≈ hybrid scheme)
by using the global log-likelihood function

LG =
1

|S|
∑

ω∈Ω

∑

x∈Sω

log [p(x|ω)q(ω)] . (17)

We can avoid estimating q(ω) by setting q(ω) = |Sω|/|S| and further, making substitu-
tion (5), we obtain the criterion

L̄G =
1

|S|
∑

ω∈Ω

∑

x∈Sω

log

[ ∑

m∈M
f(x|m)w(m|ω)

]
(18)

and the corresponding iteration equations:
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E-step: (m ∈M, x ∈ Sω, ω ∈ Ω)

w(m|x, ω) =
f(x|m)w(m|ω)∑
j∈M f(x|j)w(j|ω)

, (19)

M-step: (m ∈M, ω ∈ Ω)

w
′
(m|ω) =

1

|Sω|
∑

x∈Sω

w(m|x, ω), (20)

Here the component densities f(x|m) in (19)-(20) are assumed to be known from the
unsupervised scheme (14)-(16) but they can be included into the supervised estimation
by means of the equation

f
′
(·|m) = (21)

= arg max
f(·|m)





1

|S|
∑

ω∈Ω

∑

x∈Sω

w(m|x, ω) log f(x|m)



 .

Thus, to optimize the component densities f(x|m), we can use two obviously different
iteration schemes, the unsupervised (14) - (16) and the supervised one (19) - (21). As
it can be seen the two schemes yield identical results only asymptotically, provided
that the concept of shared components is applicable and all the mixtures are uniquely
identifiable.

In the present paper we prefer the “hybrid” estimation procedure (19) - (20) based
on unsupervised estimates of the component densities f(x|m) as it is suitable for a
sequential design of multilayer networks by means of information preserving transforms.

4 Information preserving transforms

A general functional principle to be modeled by artificial neural networks can be char-
acterized as transformation of signals. It can be understood that in this connection
many information theoretic ideas have been suggested and analyzed to optimize neural
networks (cf. e.g. [1], [9], [10], [12]).

One of the most influential method is due to Linsker [12] who proposed a learning
algorithm based on maximization of the average mutual information between the input
and output vector of the neural network. The final “infomax” learning rule is derived to
perform gradient ascent on the Shannon information criterion. Also additive Gaussian
noise is to be assumed to avoid singular situations.

The “infomax” approach is well applicable in case of approximation problems when
there is some known functional relation to be approximated or reproduced by output
values. It is, however, less useful when the output values should correspond to some
conditional probabilities.

In the framework of statistical decision problem essential property of any transform
is to preserve the original decision information contained in the input space. 1 It has

1For the information preserving property and its information theoretic characterization we refer to
Vajda [17].
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been shown (cf. [5], [7]) that the Shannon information I(X ,M) about the descriptive
decision problem on X is automatically preserved by any transform

T : X → Y , Y ⊂ RM , (22)

T(x) = (T1(x), T2(x), . . . , TM(x)) ∈ Y
defined by Eqs.

Tm(x) = ϕm(w(m|x)), x ∈ X , m ∈M (23)

where w(.|x), (cf. (8)) is the posterior distribution on M given x ∈ X and ϕm are
one-to-one mappings of the closed interval < 0, 1 > on a subset of the real line R. The
transformation (23) preserves Shannon information in the sense that

I(X ,M) = I(Y ,M) (24)

and simultaneously the Shannon entropy H(Y) of the transformed distribution is mini-
mized at the class of all transforms T satisfying (24). Loosely speaking, the transform
“unifies” the points x ∈ X with the identical posterior distribution w(.|x). As the
information preserving transform minimizes the entropy of the output space Y , it may
be expected to simplify solution of the transformed decision problem too. Recall that
minimum entropy means a minimal source complexity, also in the sense of numerical
description (cf. [14]).

For a discrete input space X the proof of the above assertions has already been
published in [5]. In the paper [7] the theorem is modified by introducing the concept of
shared components. A generalization to continuous input space can be found in [18]. It
is also easily verified (cf. [7]) that the transform (23) preserves the decision information
I(X , Ω), i.e. we have I(X , Ω) = I(Y , Ω) in analogy with (24).

5 Fault-tolerant property

We prove first that, choosing logarithmic coordinate functions φm, we obtain an in-
formation preserving transform T which is fault-tolerant in the sense that a bounded
approximation inaccuracy may cause only bounded information loss. The following the-
orem is a generalization of a similar assertion proved earlier (cf. [5]).

Theorem 5.1
Let F = {F (.|m), m ∈ M} be a finite set of arbitrary probability distributions on a
σ-algebra A of subsets of X with a priori probabilities w(m),m ∈ M. We denote by
P (·) the corresponding distribution mixture

P (·) =
∑

m∈M
F (·|m)w(m). (25)

Further let T : X → Y , Y ⊂ RM be a measurable transform of the space X
y = T(x) = (T1(x), T2(x), . . . , TM(x)) ∈ Y (26)

and let the coordinate functions Tm satisfy for some positive δ > 0, ε > 0 the inequality

|Tm(x)− ln[w(m|x) + w(m)δ]| < ε, x ∈ X (27)
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where w(·|x) is the posterior distribution on M given x ∈ X . Then the information
loss accompanying the transformation T is bounded by the inequality

I(X ,M)− I(Y ,M) =

= H(M|Y)−H(M|X ) < δ + 2ε (28)

where H(M|X ), H(M|Y) are the corresponding conditional Shannon entropies.

Proof. We denote by ST the partition of X induced by T

ST = {Sy : y ∈ Y},

Sy = T−1(y) = {x ∈ X : T(x) = y} (29)

and by Q(y) and G(y|m),m ∈M the new distributions on a σ-algebra B of subsets of
Y defined by T:

G(y|m) = F (T−1(y)|m), y = (y1, . . . , ym) ∈ Y ,

Q(y) = P (T−1(y)) =
∑

m∈M
G(y|m)w(m). (30)

Since ym = Tm(x) for all x ∈ Sy we may rewrite the inequality (27) as follows (cf. (29))

ym − ε < ln[w(m|x) + w(m)δ] ≤ ym + ε, (31)

x ∈ Sy, y ∈ Y , m ∈M.

The left-hand side of (31) may be further rewritten as follows

exp{ym − ε} < w(m|x) + w(m)δ, (32)

x ∈ Sy, y ∈ Y , m ∈M.

Conditional expectation EP{.|Sy} of this inequality yields

exp{ym − ε} < u(m|y) + w(m)δ, (33)

for y ∈ Y , m ∈M where (cf. (8))

u(m|y) = EP{w(m|x)|Sy} =
G(y|m)w(m)

Q(y)
, (34)

m ∈M, y ∈ Y
is the posterior distribution on M given y ∈ Y . The inequality (33) can be rewritten
in the form

ym < ln[u(m|y) + w(m)δ] + ε (35)

and further, taking in account the right-hand part of (31), we obtain

ln w(m|x) < ln[u(m|y) + w(m)δ] + 2ε (36)
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x ∈ Sy, y ∈ Y , m ∈M.

Again, multiplying the last inequality by w(m|x), using the Jensen’s inequality for the
convex function t ln t and making the conditional expectation EP{.|Sy}, we obtain (cf.
(34))

EP{w(m|x) ln w(m|x)|Sy} < (37)

< u(m|y){ln [u(m|y) + w(m)δ] + 2ε}.
Further, summing over m ∈M, we can write

−EP{Hx(M)|Sy} < (38)

< −Hy(M) +
∑

m∈M
u(m|y) ln[1 +

w(m)δ

u(m|y)
] + 2ε

where
Hx(M) =

∑

m∈M
−w(m|x) ln w(m|x), (39)

Hy(M) =
∑

m∈M
−u(m|y) ln u(m|y).

In view of the inequality ln(1 + ξ) < ξ, we obtain

Hy(M)− EP{Hx(M)|Sy} <
∑

m∈M
w(m)δ + 2ε.

Finally, expectation EQ of the last inequality can be rewritten in the form

EQ{Hy(M)} − EP{Hx(M)} =

= H(M|Y)−H(M|X ) < δ + 2ε

which completes the proof of the assertion (28).

It can be seen that for ε and δ approaching zero the theorem implies information pre-
serving property of the transform Tm(x) = ln w(m|x),m ∈M, as it has been discussed
in Sec. 4 above. Let us note also that the added positive constant w(m)δ in (27) avoids
possible singularity which could be caused by infinite values of logarithm near the zero
point w(m|x) = 0.

6 Discrete transforms with bounded information loss

Let us recall that the transformed space Y is a subset of M-dimensional real space RM

the dimension of which could be very high (M ≈ 101 − 102). Consequently, in case of
multilayer networks, the arising problem of estimation of probability density functions
on the space Y could tend to be ill posed.

Note that by each new component distribution added to the model we increase the
number of independent parameters and therefore, for a fixed sample size, there is an
increasing risk of “overfitting” of the estimated distribution. One way how to avoid this
problem of high dimensionality and to improve practical applicability of the transform T,
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is to reduce the cardinality of the transformed space Y , e.g. by making the coordinate
functions φm discrete. In this connection we can use the fault tolerant property to
discretize the probabilistic neural networks with a reasonably bounded information loss.
The following Corollary is an immediate consequence of Theorem 5.1.

Corollary 6.1

Let T : X → Y be a transform of the space X defined by the coordinate functions

ym = Tm(x) = ψm(w(m|x)), x ∈ X (40)

where ψm(ξ), m ∈M are stepwise approximations of the functions ln[ξ + w(m)δ] with
the positive parameters ε > 0, δ > 0. In particular, let

Jm = {|1
ε

ln[1 +
1

w(m)δ
]|} (41)

be the number of discrete values of the function ψm defined by the equation

ψm(ξ) = ln[w(m)δ] + jε, 1 ≤ j ≤ Jm (42)

for
w(m)δ[e(j−1)ε − 1] ≤ ξ < w(m)δ[ejε − 1],

and by the equation
ψm(ξ) = ln[1 + w(m)δ],

for
w(m)δ[eJmε − 1] ≤ ξ ≤ 1.

whereby notation {|..|} stands for the integer part of the parenthesized expression. Then
the transform (40) satisfies the condition (27) and therefore the corresponding informa-
tion loss is bounded by δ + 2ε.

7 Concluding remarks

The present probabilistic approach to multilayer neural networks is characterized by
information preserving transform of the underlying classification problem between con-
secutive layers. At each layer the class-conditional probability density functions are
approximated by finite mixtures whereby the component densities (corresponding to
neurons) define the coordinate functions of the transform. The dimensionality of the
estimated densities is therefore given by the number of mixture components (neurons)
at the preceding layer and can be relatively high (M ≈ 102). By introducing discrete
transforms we avoid the difficult problem of estimating multivariate (possibly ill posed)
density functions and simplify the approximation problem. Instead of normal mixtures
we can use more simple models, e.g. general discrete mixtures with product components.

Let us remark, however, that discretization based on the Corollary 6.1 is not suitable
in case of binary variables (Jm = 2) since we could be forced to choose relatively large
values of δ and ε (cf. (41)) with undesirable consequences. In view of its theoretical and
practical relevance the problem of binary approximating will be subject of a particular
paper [8].
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